A simple root n bandwidth selector
نویسندگان
چکیده
The asymptotically best bandwidth selectors for a kernel density estimator currently require the use of either unappealing higher order kernel pilot estimators or related Fourier transform methods. The point of this paper is to present a methodology which allows the fastest possible rate of convergence with the use of only nonnegative kernel estimators at all stages of the selection process. The essential idea is derived through careful study of factorizations of the pilot bandwidth in terms of the original bandwidth.
منابع مشابه
Practical bandwidth selection in deconvolution kernel density estimation
Kernel estimation of a density based on contaminated data is considered and the important issue of how to choose the bandwidth parameter in practice is discussed. Some plug-in (PI) type of bandwidth selectors, which are based on non-parametric estimation of an approximation of the mean integrated squared error, are proposed. The selectors are a re4nement of the simple normal reference bandwidth...
متن کاملImproving cross-validated bandwidth selection using subsampling-extrapolation techniques
Cross-validation methodologies have been widely used as a means of selecting tuning parameters in nonparametric statistical problems. In this paper we focus on a newmethod for improving the reliability of cross-validation. We implement this method in the context of the kernel density estimator, where one needs to select the bandwidth parameter so as to minimize L2 risk. This method is a two-sta...
متن کاملA variable bandwidth selector in multivariate kernel density estimation
Based on a random sample of size n from an unknown d-dimensional density f , the problem of selecting the variable (or adaptive) bandwidth in kernel estimation of f is investigated. The common strategy is to express the variable bandwidth at each observation as the product of a local bandwidth factor and a global smoothing parameter. For selecting the local bandwidth factor a method based on cl...
متن کاملA Bayesian Approach to Bandwidth Selection for Multivariate Kernel Regression with an Application to State- Price Density Estimation
Multivariate kernel regression is an important tool for investigating the relationship between a response and a set of explanatory variables. It is generally accepted that the performance of a kernel regression estimator largely depends on the choice of bandwidth rather than the kernel function. This nonparametric technique has been employed in a number of empirical studies including the state-...
متن کاملBandwidth selection for the presmoothed density estimator with censored data
This paper is concerned with the problem of selecting a suitable bandwidth for the presmoothed density estimator from right censored data. An asymptotic expression for the mean integrated squared error (MISE) of this estimator is given, and the smoothing parameters minimizing it are proved to be consistent approximations of the MISE bandwidths. As consequence, a bandwidth selector based on plug...
متن کامل